Инструменты пользователя

Инструменты сайта


Боковая панель


Геометрия ( Справочник )
Стереометрия ( Справочник )
Математика ( Справочник )
Русский язык ( Справочник )
Физика ( Справочник )


Геометрия:

Введение в геометрию

Отрезок, луч, угол
   Отрезок
   Луч и полуплоскость
   Угол
   Измерение отрезков
   Измерение углов
   Смежные и вертикальные углы. Перпендикулярные прямые

Треугольники
   Треугольник и его элементы
   Признаки равенства треугольников
   Свойства равнобедренного треугольника. Третий признак равенства треугольников.

Основные геометрические построения
   Окружность
   Основные задачи на построение

Параллельные прямые
   Определение параллельных прямых
   Признаки параллельности двух прямых. Свойства параллельных прямых

Сумма углов треугольника
   Теорема о сумме углов треугольника
   Соотношения между сторонами и углами треугольника. Неравенство треугольника
   Расстояние от точки до прямой
   Признаки равенства прямоугольных треугольников

Четырехугольники
   Определение четырехугольника
   Параллелограмм. Расстояние между параллельными прямыми
   Диагонали и признаки параллелограмма
   Прямоугольник
   Ромб
   Квадрат
   Теорема Фалеса. Средняя линия треугольника
   Трапеция
   Центральная и осевая симметрии
   Пропорциональные отрезки

Тригонометрические функции острого угла. Теорема Пифагора
   Тригонометрические функции острого угла. Определения
   Теорема Пифагора
   Основные тригонометрические тождества
   Значения тригонометрических функций некоторых углов
   Зависимости между сторонами и углами прямоугольного треугольника
   Решение прямоугольных треугольников

Прямоугольные координаты
   Координатная ось
   Прямоугольная система координат на плоскости
   Расстояние между точками
   Координаты середины отрезка
   Определение тригонометрических функций для любого угла от 0 до 180°

Векторы
   Понятие вектора
   Сложение и вычитание векторов
   Умножение вектора на число
   Координаты вектора
   Скалярное произведение векторов

Подобие
   Определение подобных треугольников
   Признаки подобия треугольников
   Подобие произвольных фигур

Окружность
   Касательная к окружности
   Центральные и вписанные углы
   Вписанная и описанная окружности
   Пропорциональность отрезков хорд и секущих окружности

Решение треугольников
   Теорема синусов и теорема косинусов
   Решение треугольников

Многоугольники. Длина окружности
   Ломаная
   Многоугольник
   Правильный многоугольник
   Длина окружности
   Длина дуги окружности. Радианная мера угла

Площади плоских фигур
   Понятие площади
   Площадь прямоугольника
   Площадь параллелограмма
   Площадь треугольника и ромба
   Площадь трапеции
   Площадь правильного многоугольника
   Площадь круга и кругового сектора


Контакты

subjects:geometry:теорема_фалеса._средняя_линия_треугольника

Теорема Фалеса. Средняя линия треугольника

Теорема 1. Теорема Фалеса1). Если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне равные отрезки, то они отсекают равные отрезки и на другой его стороне.

Доказательство. Пусть А1, А2, А3 — точки пересечения параллельных прямых с одной из сторон угла и А2 лежит между А1 и А3 (рис.1).

Теорема Фалеса. Средняя линия треугольника

Рис.1

Пусть B1 В2, В3 — соответствующие точки пересечения этих прямых с другой стороной угла. Докажем, что если А1А2 = A2A3, то В1В2 = В2В3.

Проведем через точку В2 прямую EF, параллельную прямой А1А3. По свойству параллелограмма А1А2 = FB2 , A2A3 = B2E .

И так как А1А2 = A2A3, то FB2 = В2Е.

Треугольники B2B1F и В2В3Е равны по второму признаку. У них B2F = В2Е по доказанному. Углы при вершине В2 равны как вертикальные, а углы B2FB1 и B2EB3 равны как внутренние накрест лежащие при параллельных А1В1 и A3B3 и секущей EF. Из равенства треугольников следует равенство сторон: В1В2 = В2В3 . Теорема доказана.

С использованием теоремы Фалеса устанавливается следующая теорема.

Теорема 2. Средняя линия треугольника параллельна третьей стороне и равна ее половине.

Средней линией треугольника называется отрезок, соединяющий середины двух его сторон. На рисунке 2 отрезок ED — средняя линия треугольника ABC.


ED — средняя линия треугольника ABC

Рис.2


Обучение по геометрии

Пример 1. Разделить данный отрезок на четыре равные части.

Решение. Пусть АВ — данный отрезок (рис.3), который надо разделить на 4 равные части.

Деление отрезка 
на четыре равные части
Деление отрезка на четыре равные части

Рис.3

Для этого через точку А проведем произвольную полупрямую а и отложим на ней последовательно четыре равных между собой отрезка AC, CD, DE, ЕК.

Соединим точки В и К отрезком. Проведем через оставшиеся точки С, D, Е прямые, параллельные прямой ВК, так, чтобы они пересекли отрезок АВ.

Согласно теореме Фалеса отрезок АВ разделится на четыре равные части.


Пример 2. Диагональ прямоугольника равна а. Чему равен периметр четырехугольника, вершины которого являются серединами сторон прямоугольника?

Решение. Пусть условию задачи отвечает рисунок 4.

Геометрия ЕГЭ и ГИА

Рис.4

Тогда EF — средняя линия треугольника ABC и, значит, по теореме 2. $$ EF = \frac{1}{2}AC = \frac{a}{2} $$

Аналогично $$ HG = \frac{1}{2}AC = \frac{a}{2} , EH = \frac{1}{2}BD = \frac{a}{2} , FG = \frac{1}{2}BD = \frac{a}{2} $$ и, следовательно, периметр четырехугольника EFGH равен 2a.


Пример 3. Стороны треугольника равны 2 см, 3 см и 4 см, а вершины его — середины сторон другого треугольника. Найти периметр большого треугольника.

Решение. Пусть условию задачи отвечает рисунок 5.

Подготовка к ГИА и ЕГЭ по геометрии

Рис.5

Отрезки АВ, ВС, АС — средние линии треугольника DEF. Следовательно, согласно теореме 2 $$ AB = \frac{1}{2}EF\ \ ,\ \ BC = \frac{1}{2}DE\ \ ,\ \ AC = \frac{1}{2}DF $$ или $$ 2 = \frac{1}{2}EF\ \ ,\ \ 3 = \frac{1}{2}DE\ \ ,\ \ 4 = \frac{1}{2}DF $$ откуда $$ EF = 4\ \ ,\ \ DE = 6\ \ ,\ \ DF = 8 $$ и, значит, периметр треугольника DEF равен 18 см.


Пример 4. В прямоугольном треугольнике через середину его гипотенузы проведены прямые, параллельные его катетам. Найти периметр образовавшегося прямоугольника, если катеты треугольника равны 10 см и 8 см.

Решение. В треугольнике ABC (рис.6)

Геометрия треугольник

Рис.6

∠ А прямой, АВ = 10 см, АС = 8 см, KD и MD — средние линии треугольника ABC, откуда $$ KD = \frac{1}{2}AC = 4 см. \\ MD = \frac{1}{2}AB = 5 см. $$ Периметр прямоугольника К DMА равен 18 см.


Обучение по геометрии

1) Фалес Милетский — древнегреческий ученый философ и математик из Милета (Малая Азия), живший в VI в. до н. э.
subjects/geometry/теорема_фалеса._средняя_линия_треугольника.txt · Последние изменения: 2013/10/12 01:59 —

На главную страницу Обучение Wikipedia Тестирование Купить Контакты Нашли ошибку? Справка

Записаться на занятия

Ошибка Записаться на занятия к репетитору





закрыть[X]
Наши контакты