Инструменты пользователя

Инструменты сайта


Боковая панель


Геометрия ( Справочник )
Стереометрия ( Справочник )
Математика ( Справочник )
Русский язык ( Справочник )
Физика ( Справочник )


Геометрия:

Введение в геометрию

Отрезок, луч, угол
   Отрезок
   Луч и полуплоскость
   Угол
   Измерение отрезков
   Измерение углов
   Смежные и вертикальные углы. Перпендикулярные прямые

Треугольники
   Треугольник и его элементы
   Признаки равенства треугольников
   Свойства равнобедренного треугольника. Третий признак равенства треугольников.

Основные геометрические построения
   Окружность
   Основные задачи на построение

Параллельные прямые
   Определение параллельных прямых
   Признаки параллельности двух прямых. Свойства параллельных прямых

Сумма углов треугольника
   Теорема о сумме углов треугольника
   Соотношения между сторонами и углами треугольника. Неравенство треугольника
   Расстояние от точки до прямой
   Признаки равенства прямоугольных треугольников

Четырехугольники
   Определение четырехугольника
   Параллелограмм. Расстояние между параллельными прямыми
   Диагонали и признаки параллелограмма
   Прямоугольник
   Ромб
   Квадрат
   Теорема Фалеса. Средняя линия треугольника
   Трапеция
   Центральная и осевая симметрии
   Пропорциональные отрезки

Тригонометрические функции острого угла. Теорема Пифагора
   Тригонометрические функции острого угла. Определения
   Теорема Пифагора
   Основные тригонометрические тождества
   Значения тригонометрических функций некоторых углов
   Зависимости между сторонами и углами прямоугольного треугольника
   Решение прямоугольных треугольников

Прямоугольные координаты
   Координатная ось
   Прямоугольная система координат на плоскости
   Расстояние между точками
   Координаты середины отрезка
   Определение тригонометрических функций для любого угла от 0 до 180°

Векторы
   Понятие вектора
   Сложение и вычитание векторов
   Умножение вектора на число
   Координаты вектора
   Скалярное произведение векторов

Подобие
   Определение подобных треугольников
   Признаки подобия треугольников
   Подобие произвольных фигур

Окружность
   Касательная к окружности
   Центральные и вписанные углы
   Вписанная и описанная окружности
   Пропорциональность отрезков хорд и секущих окружности

Решение треугольников
   Теорема синусов и теорема косинусов
   Решение треугольников

Многоугольники. Длина окружности
   Ломаная
   Многоугольник
   Правильный многоугольник
   Длина окружности
   Длина дуги окружности. Радианная мера угла

Площади плоских фигур
   Понятие площади
   Площадь прямоугольника
   Площадь параллелограмма
   Площадь треугольника и ромба
   Площадь трапеции
   Площадь правильного многоугольника
   Площадь круга и кругового сектора


Контакты

subjects:geometry:касательная_к_окружности

Касательная к окружности

Прямая, проходящая через точку окружности перпендикулярно к радиусу, проведенному в эту точку, называется касательной. При этом данная точка окружности называется точкой касания. На рисунке 1 прямая а проведена через точку А окружности перпендикулярно к радиусу ОА.

Касательная к окружности

Рис.1

Прямая а является касательной к окружности. Точка А является точкой касания. Можно сказать также, что окружность касается прямой а в точке А.

Теорема 1. Касательная к окружности не имеет с ней других общих точек, кроме точки касания.

Доказательство. Пусть а — касательная к окружности в точке А (рис.2).

Касательная

Рис.2

Допустим, что касательная а и окружность имеют, кроме точки А, общую точку В, отличную от А. Треугольник АОВ равнобедренный (ОА и ОВ — радиусы окружности) и, значит, $\angle А = \angle В$ . Но угол А — прямой, следовательно, и угол В — прямой, что невозможно. Теорема доказана.

Говорят, что две окружности, имеющие общую точку, касаются в этой точке, если они имеют в этой точке общую касательную (рис. 3).

касание внутреннее и касание внешнее

Рис.3

Касание окружностей называется внутренним, если центры окружностей лежат по одну сторону от их общей касательной (рис. 3, а). Касание окружностей называется внешним, если центры окружностей лежат по разные стороны от их общей касательной (рис. 3, б).


Обучение по геометрии

Пример 1. Построить окружность данного радиуса, касающуюся данной прямой в данной точке.

Решение. Касательная к окружности перпендикулярна к радиусу, проведенному в точку касания. Поэтому центр искомой окружности лежит на перпендикуляре к данной прямой, проходящем через данную точку, и находится от данной точки на расстоянии, равном радиусу. Задача имеет два решения — две окружности, симметричные друг другу относительно данной прямой (рис. 4).

Репетитор геометрия онлайн курсы ГИА ЕГЭ

Рис.4


Пример 2. Две окружности диаметром 4 и 8 см касаются внешним образом. Чему равно расстояние между центрами этих окружностей?

Решение. Радиусы окружностей перпендикулярны их общей касательной (см. рис. 3, б). Поэтому искомое расстояние равно сумме их радиусов, т. е. 2 + 4 = 6 (см).


Обучение по геометрии

subjects/geometry/касательная_к_окружности.txt · Последние изменения: 2013/10/12 02:13 —

На главную страницу Обучение Wikipedia Тестирование Купить Контакты Нашли ошибку? Справка

Записаться на занятия

Ошибка Записаться на занятия к репетитору

Телефоны:

  • +7 (910) 874 73 73
  • +7 (831) 247 47 55

Skype: eduVdom.com

закрыть[X]
Наши контакты