Инструменты пользователя

Инструменты сайта


Боковая панель


Геометрия ( Справочник )
Стереометрия ( Справочник )
Математика ( Справочник )
Русский язык ( Справочник )
Физика ( Справочник )


Геометрия:

Введение в геометрию

Отрезок, луч, угол
   Отрезок
   Луч и полуплоскость
   Угол
   Измерение отрезков
   Измерение углов
   Смежные и вертикальные углы. Перпендикулярные прямые

Треугольники
   Треугольник и его элементы
   Признаки равенства треугольников
   Свойства равнобедренного треугольника. Третий признак равенства треугольников.

Основные геометрические построения
   Окружность
   Основные задачи на построение

Параллельные прямые
   Определение параллельных прямых
   Признаки параллельности двух прямых. Свойства параллельных прямых

Сумма углов треугольника
   Теорема о сумме углов треугольника
   Соотношения между сторонами и углами треугольника. Неравенство треугольника
   Расстояние от точки до прямой
   Признаки равенства прямоугольных треугольников

Четырехугольники
   Определение четырехугольника
   Параллелограмм. Расстояние между параллельными прямыми
   Диагонали и признаки параллелограмма
   Прямоугольник
   Ромб
   Квадрат
   Теорема Фалеса. Средняя линия треугольника
   Трапеция
   Центральная и осевая симметрии
   Пропорциональные отрезки

Тригонометрические функции острого угла. Теорема Пифагора
   Тригонометрические функции острого угла. Определения
   Теорема Пифагора
   Основные тригонометрические тождества
   Значения тригонометрических функций некоторых углов
   Зависимости между сторонами и углами прямоугольного треугольника
   Решение прямоугольных треугольников

Прямоугольные координаты
   Координатная ось
   Прямоугольная система координат на плоскости
   Расстояние между точками
   Координаты середины отрезка
   Определение тригонометрических функций для любого угла от 0 до 180°

Векторы
   Понятие вектора
   Сложение и вычитание векторов
   Умножение вектора на число
   Координаты вектора
   Скалярное произведение векторов

Подобие
   Определение подобных треугольников
   Признаки подобия треугольников
   Подобие произвольных фигур

Окружность
   Касательная к окружности
   Центральные и вписанные углы
   Вписанная и описанная окружности
   Пропорциональность отрезков хорд и секущих окружности

Решение треугольников
   Теорема синусов и теорема косинусов
   Решение треугольников

Многоугольники. Длина окружности
   Ломаная
   Многоугольник
   Правильный многоугольник
   Длина окружности
   Длина дуги окружности. Радианная мера угла

Площади плоских фигур
   Понятие площади
   Площадь прямоугольника
   Площадь параллелограмма
   Площадь треугольника и ромба
   Площадь трапеции
   Площадь правильного многоугольника
   Площадь круга и кругового сектора


Контакты

subjects:geometry:подобие_произвольных_фигур

Подобие произвольных фигур

Понятие подобия можно ввести не только для треугольников, но и для произвольных фигур. Фигуры F и F1 называются подобными, если каждой точке фигуры F можно сопоставить точку фигуры F1 так, что для любых двух точек М и N фигуры F и сопоставленных им точек М1 и N1 фигуры F1 выполняется условие $\frac{M_1N_1}{MN} = k$ , где k — одно и то же положительное число для всех точек. При этом предполагается, что каждая точка фигуры F1 оказывается сопоставленной какой-то точке фигуры F. Число k называется коэффициентом подобия фигур F и F1.

Подобие произвольных фигур. Преобразование фигур

Рис.1

На рисунке 1 представлен способ построения фигуры F1 , подобной данной фигуре F. Каждой точке М фигуры F сопоставляется точка М1 плоскости так, что точки М и М1 лежат на луче с началом в некоторой фиксированной точке О, причем ОМ1 = k*OM (на рис.1 k = 3). В результате такого сопоставления получается фигура F1, подобная фигуре F.

Этот способ построения фигуры F1, подобной фигуре F, называется центрально-подобным преобразованием фигуры F в фигуру F1 или гомотетией, а фигуры F и F1 — центрально-подобными или гомотетичными.

Можно доказать, что для треугольников общее определение подобия равносильно определению, данному в п.1.

Примерами подобных четырехугольников являются любые два квадрата (рис. 2, а), а также два прямоугольника, у которых две смежные стороны одного пропорциональны двум смежным сторонам другого (рис. 2, б).

Примерами подобных четырехугольников являются любые два квадрата, а также два прямоугольника

Рис.2

Если каждую точку данной фигуры сместить каким-нибудь образом, то мы получим новую фигуру. Говорят, что эта фигура получена преобразованием из данной.

Гомотетия и рассмотренные ранее центральная симметрия и осевая симметрия — примеры преобразований фигур.

Рассмотрим еще один пример преобразования фигуры — параллельный перенос.

Преобразование фигуры F, при котором каждая ее точка Х(х; у) переходит в точку Х'(х + а; у + b), а и b постоянные, называется параллельным переносом (рис.3).

Подготовка ГИА и ЕГЭ по математике, физике, геометрии

Рис.3

Параллельный перенос задается формулами $$ x' = x + a \\ y' = y + b $$ Эти формулы выражают координаты х', у' точки, в которую переходит точка (х; у) при параллельном переносе.

Название «параллельный перенос» оправдывается тем, что при параллельном переносе точки смещаются по параллельным (или совпадающим) прямым на одно и то же расстояние.

Заметим также, что при параллельном переносе прямая переходит в параллельную прямую (или в себя).


Обучение по геометрии

Пример 1. При параллельном переносе точка (1; 1) переходит в точку (-1; 0). В какую точку переходит начало координат?

Решение. Любой параллельный перенос задается формулами х' = х + а; у' = у + b. Так как точка (1; 1) переходит в точку (-1; 0), то -1 = 1 + а; 0 = 1 + b. Отсюда а = -2 ; b = -1.

Таким образом, параллельный перенос, переводящий точку (1; 1) в (-1; 0), задается формулами х' = х - 2 ; у' = у - 1.

Подставляя в эти формулы координаты начала (х = 0; у = 0), получим: х' = -2; у' = -1.

Итак, начало координат переходит в точку (-2; -1).


Обучение по геометрии

subjects/geometry/подобие_произвольных_фигур.txt · Последние изменения: 2013/10/12 02:12 —

На главную страницу Обучение Wikipedia Тестирование Купить Контакты Нашли ошибку? Справка

Записаться на занятия

Ошибка Записаться на занятия к репетитору

Телефоны:

  • +7 (910) 874 73 73
  • +7 (831) 247 47 55

Skype: eduVdom.com

закрыть[X]
Наши контакты