Инструменты пользователя

Инструменты сайта


Боковая панель


Геометрия ( Справочник )
Стереометрия ( Справочник )
Математика ( Справочник )
Русский язык ( Справочник )
Физика ( Справочник )


Геометрия:

Введение в геометрию

Отрезок, луч, угол
   Отрезок
   Луч и полуплоскость
   Угол
   Измерение отрезков
   Измерение углов
   Смежные и вертикальные углы. Перпендикулярные прямые

Треугольники
   Треугольник и его элементы
   Признаки равенства треугольников
   Свойства равнобедренного треугольника. Третий признак равенства треугольников.

Основные геометрические построения
   Окружность
   Основные задачи на построение

Параллельные прямые
   Определение параллельных прямых
   Признаки параллельности двух прямых. Свойства параллельных прямых

Сумма углов треугольника
   Теорема о сумме углов треугольника
   Соотношения между сторонами и углами треугольника. Неравенство треугольника
   Расстояние от точки до прямой
   Признаки равенства прямоугольных треугольников

Четырехугольники
   Определение четырехугольника
   Параллелограмм. Расстояние между параллельными прямыми
   Диагонали и признаки параллелограмма
   Прямоугольник
   Ромб
   Квадрат
   Теорема Фалеса. Средняя линия треугольника
   Трапеция
   Центральная и осевая симметрии
   Пропорциональные отрезки

Тригонометрические функции острого угла. Теорема Пифагора
   Тригонометрические функции острого угла. Определения
   Теорема Пифагора
   Основные тригонометрические тождества
   Значения тригонометрических функций некоторых углов
   Зависимости между сторонами и углами прямоугольного треугольника
   Решение прямоугольных треугольников

Прямоугольные координаты
   Координатная ось
   Прямоугольная система координат на плоскости
   Расстояние между точками
   Координаты середины отрезка
   Определение тригонометрических функций для любого угла от 0 до 180°

Векторы
   Понятие вектора
   Сложение и вычитание векторов
   Умножение вектора на число
   Координаты вектора
   Скалярное произведение векторов

Подобие
   Определение подобных треугольников
   Признаки подобия треугольников
   Подобие произвольных фигур

Окружность
   Касательная к окружности
   Центральные и вписанные углы
   Вписанная и описанная окружности
   Пропорциональность отрезков хорд и секущих окружности

Решение треугольников
   Теорема синусов и теорема косинусов
   Решение треугольников

Многоугольники. Длина окружности
   Ломаная
   Многоугольник
   Правильный многоугольник
   Длина окружности
   Длина дуги окружности. Радианная мера угла

Площади плоских фигур
   Понятие площади
   Площадь прямоугольника
   Площадь параллелограмма
   Площадь треугольника и ромба
   Площадь трапеции
   Площадь правильного многоугольника
   Площадь круга и кругового сектора


Контакты

subjects:geometry:основные_задачи_на_построение

Основные задачи на построение

В задачах на построение будем рассматривать построение геометрической фигуры, которое можно выполнить с помощью линейки и циркуля.

С помощью линейки можно провести:

  • произвольную прямую;
  • произвольную прямую, проходящую через данную точку;
  • прямую, проходящую через две данные точки.

С помощью циркуля можно описать из данного центра окружность данного радиуса.

Циркулем можно отложить отрезок на данной прямой от данной точки.

Рассмотрим основные задачи на построение.


Обучение по геометрии

Задача 1. Построить треугольник с данными сторонами а, b, с (рис.1).

Геометрия, Построить треугольник с данными сторонами а, b, с

Рис.1

Решение. С помощью линейки проведем произвольную прямую и возьмем на ней произвольную точку В. Раствором циркуля, равным а, описываем окружность с центром В и радиусом а. Пусть С — точка ее пересечения с прямой. Раствором циркуля, равным с, описываем окружность из центра В, а раствором циркуля, равным b — окружность из центра С. Пусть А — точка пересечения этих окружностей. Треугольник ABC имеет стороны, равные a, b, c.

Замечание. Чтобы три отрезка прямой могли служить сторонами треугольника, необходимо, чтобы больший из них был меньше суммы двух остальных (а < b + с).


Задача 2. Отложить от данного луча угол, равный данному.

Отложить от данного луча угол, равный данному

Рис.2

Решение. Данный угол с вершиной А и луч ОМ изображены на рисунке 2.

Геометрия, ГИА, Основные задачи на построение

Рис.3

Проведем произвольную окружность с центром в вершине А данного угла. Пусть В и С — точки пересечения окружности со сторонами угла (рис.3, а). Радиусом АВ проведем окружность с центром в точке О — начальной точке данного луча (рис.3, б). Точку пересечения этой окружности с данным лучом обозначим С1. Опишем окружность с центром С1 и радиусом ВС. Точка В1 пересечения двух окружностей лежит на стороне искомого угла. Это следует из равенства Δ ABC = Δ ОВ1С1 (третий признак равенства треугольников).


Задача 3. Построить биссектрису данного угла (рис.4).

Построение биссектрисы угла, геометрия ГИА

Рис.4

Решение. Из вершины А данного угла, как из центра, проводим окружность произвольного радиуса. Пусть В и С — точки ее пересечения со сторонами угла. Из точек В и С тем же радиусом описываем окружности. Пусть D — точка их пересечения, отличная от А. Луч AD делит угол А пополам. Это следует из равенства Δ ABD = Δ ACD (третий признак равенства треугольников).


Задача 4. Провести серединный перпендикуляр к данному отрезку (рис.5).

Построение серединного перпендикуляра к отрезку АВ, Основные задачи на построение

Рис.5

Решение. Произвольным, но одинаковым раствором циркуля ( большим 1/2 АВ ) описываем две дуги с центрами в точках А и В, которые пересекутся между собой в некоторых точках С и D. Прямая CD будет искомым перпендикуляром. Действительно, как видно из построения, каждая из точек С и D одинаково удалена от А и В; следовательно, эти точки должны лежать на серединном перпендикуляре к отрезку АВ.


Задача 5. Разделить данный отрезок пополам. Решается так же, как и задача 4 (см. рис.5).

Построение серединного перпендикуляра к отрезку АВ, Основные задачи на построение

Рис.5


Задача 6. Через данную точку провести прямую, перпендикулярную данной прямой.

Решение. Возможны два случая:

1) данная точка О лежит на данной прямой а (рис. 6).

Проведение перпендикулярной прямой к данной прямой, геометрия ГИА и ЕГЭ

Рис.6

Из точки О проводим произвольным радиусом окружность. Она пересекает прямую а в двух точках А и В. Из точек А и В проводим окружности радиусом АВ. Пусть С — точка их пересечения. Получаем ОС ⊥ AB. В самом деле, Δ АСВ — равнобедренный, СА = СВ. Отрезок СО есть медиана этого треугольника, а следовательно, и высота;

2) данная точка О не лежит на данной прямой а (рис.7).

Проведение перпендикулярной прямой к данной прямой, подготовка к ГИА и ЕГЭ

Рис.7

Из точки О проводим произвольным радиусом окружность, пересекающую прямую а в точках А и В. Из точек А и В тем же радиусом проводим окружности. Пусть О1 — точка их пересечения, отличная от О. Получаем ОО1 ⊥ AB. В самом деле, точки О и О1 равноудалены от концов отрезка АВ и, следовательно, лежат на серединном перпендикуляре к этому отрезку.


Обучение по геометрии

subjects/geometry/основные_задачи_на_построение.txt · Последние изменения: 2013/10/12 01:49 —

На главную страницу Обучение Wikipedia Тестирование Купить Контакты Нашли ошибку? Справка

Записаться на занятия

Ошибка Записаться на занятия к репетитору





закрыть[X]
Наши контакты