Инструменты пользователя

Инструменты сайта


Боковая панель


Геометрия ( Справочник )
Стереометрия ( Справочник )
Математика ( Справочник )
Русский язык ( Справочник )
Физика ( Справочник )


Геометрия:

Введение в геометрию

Отрезок, луч, угол
   Отрезок
   Луч и полуплоскость
   Угол
   Измерение отрезков
   Измерение углов
   Смежные и вертикальные углы. Перпендикулярные прямые

Треугольники
   Треугольник и его элементы
   Признаки равенства треугольников
   Свойства равнобедренного треугольника. Третий признак равенства треугольников.

Основные геометрические построения
   Окружность
   Основные задачи на построение

Параллельные прямые
   Определение параллельных прямых
   Признаки параллельности двух прямых. Свойства параллельных прямых

Сумма углов треугольника
   Теорема о сумме углов треугольника
   Соотношения между сторонами и углами треугольника. Неравенство треугольника
   Расстояние от точки до прямой
   Признаки равенства прямоугольных треугольников

Четырехугольники
   Определение четырехугольника
   Параллелограмм. Расстояние между параллельными прямыми
   Диагонали и признаки параллелограмма
   Прямоугольник
   Ромб
   Квадрат
   Теорема Фалеса. Средняя линия треугольника
   Трапеция
   Центральная и осевая симметрии
   Пропорциональные отрезки

Тригонометрические функции острого угла. Теорема Пифагора
   Тригонометрические функции острого угла. Определения
   Теорема Пифагора
   Основные тригонометрические тождества
   Значения тригонометрических функций некоторых углов
   Зависимости между сторонами и углами прямоугольного треугольника
   Решение прямоугольных треугольников

Прямоугольные координаты
   Координатная ось
   Прямоугольная система координат на плоскости
   Расстояние между точками
   Координаты середины отрезка
   Определение тригонометрических функций для любого угла от 0 до 180°

Векторы
   Понятие вектора
   Сложение и вычитание векторов
   Умножение вектора на число
   Координаты вектора
   Скалярное произведение векторов

Подобие
   Определение подобных треугольников
   Признаки подобия треугольников
   Подобие произвольных фигур

Окружность
   Касательная к окружности
   Центральные и вписанные углы
   Вписанная и описанная окружности
   Пропорциональность отрезков хорд и секущих окружности

Решение треугольников
   Теорема синусов и теорема косинусов
   Решение треугольников

Многоугольники. Длина окружности
   Ломаная
   Многоугольник
   Правильный многоугольник
   Длина окружности
   Длина дуги окружности. Радианная мера угла

Площади плоских фигур
   Понятие площади
   Площадь прямоугольника
   Площадь параллелограмма
   Площадь треугольника и ромба
   Площадь трапеции
   Площадь правильного многоугольника
   Площадь круга и кругового сектора


Контакты

subjects:geometry:длина_окружности

Длина окружности

Наглядное представление о длине окружности получается следующим образом. Представим себе нить в форме окружности. Разрежем ее и растянем за концы. Длина полученного отрезка и есть длина окружности.

Как найти длину окружности, зная ее радиус? При неограниченном увеличении числа сторон вписанного в окружность правильного многоугольника его периметр неограниченно приближается к длине окружности (рис.1). Это используется при доказательстве следующей теоремы.

Длина окружности

Рис.1

Теорема 1. Отношение длины окружности к ее диаметру не зависит от окружности, т. е. одно и то оке для любых двух окружностей.

Отношение длины окружности к ее диаметру принято обозначать греческой буквой $\pi$ (читается «пи»): $$ \frac{C}{2R} = \pi \,\,\, (6)$$ где С — длина окружности, R — ее радиус.

Число $\pi$ иррациональное, его приближенное значение $\pi \approx 3,1416$.

Из равенства (6) имеем $$ C = 2\pi R, \,\,\, (7) $$ т. е. длина окружности радиуса R вычисляется по формуле (7). Например, длина окружности радиуса 12 м равна $2\pi \bullet 12 = 24\pi\text{ м.}$


Обучение по геометрии

Пример 1. На сколько изменится длина окружности, если радиус увеличится на 1 м?

Решение. Пусть радиус первоначальной окружности был R1 , тогда длина этой окружности $C = 2\pi R_1$ .

По условию радиус первоначальной окружности увеличивается на 1 м, т.е. $R_2 = (R_1 + 1)$ , тогда длина новой окружности $$ C_2 = 2\pi R_2 = 2\pi (R_1 + 1) $$ Найдем разность: $$ C_2 - C_1 = 2\pi (R_1 + 1) - 2\pi R_1 = 2\pi $$ Итак, $ C_2 - C_1 = 2\pi \approx 6,28\text{ (м)}$


Пример 2. Точки М и N делят окружность на две дуги, разность градусных мер которых равна 90°. Чему равны градусные меры каждой из дуг?

Решение. Сумма градусных мер дуг равна 360°, а разность равна 90°. Обозначим градусные меры этих дуг х и у.
Имеем: $$ \left\{\begin{matrix} x + y = 360 \\ x - y = 90 \end{matrix}\right. $$ Решая эту систему, получим х = 225°; у = 135°.


Пример 3. Сторона квадрата равна 4 см. Вычислить длину окружности: 1) вписанной в него; 2) описанной около него.

Решение.

  1. Радиус вписанной в квадрат окружности равен 2 см, тогда длина окружности равна $C = 2\pi R \text{ , т. е. } C = 4\pi\text{ см.}$
  2. Радиус окружности, описанной около квадрата, равен $\frac{a}{ \sqrt{2} }$. Поэтому $R = \frac{4}{ \sqrt{2} } = 2\sqrt{2}$ , а длина окружности равна $C = 4\sqrt{2}\bullet\pi$ см.

Обучение по геометрии

subjects/geometry/длина_окружности.txt · Последние изменения: 2013/10/12 02:21 —

На главную страницу Обучение Wikipedia Тестирование Купить Контакты Нашли ошибку? Справка

Записаться на занятия

Ошибка Записаться на занятия к репетитору





закрыть[X]
Наши контакты