Инструменты пользователя

Инструменты сайта


Боковая панель


Геометрия ( Справочник )
Стереометрия ( Справочник )
Математика ( Справочник )
Русский язык ( Справочник )
Физика ( Справочник )


Геометрия:

Введение в геометрию

Отрезок, луч, угол
   Отрезок
   Луч и полуплоскость
   Угол
   Измерение отрезков
   Измерение углов
   Смежные и вертикальные углы. Перпендикулярные прямые

Треугольники
   Треугольник и его элементы
   Признаки равенства треугольников
   Свойства равнобедренного треугольника. Третий признак равенства треугольников.

Основные геометрические построения
   Окружность
   Основные задачи на построение

Параллельные прямые
   Определение параллельных прямых
   Признаки параллельности двух прямых. Свойства параллельных прямых

Сумма углов треугольника
   Теорема о сумме углов треугольника
   Соотношения между сторонами и углами треугольника. Неравенство треугольника
   Расстояние от точки до прямой
   Признаки равенства прямоугольных треугольников

Четырехугольники
   Определение четырехугольника
   Параллелограмм. Расстояние между параллельными прямыми
   Диагонали и признаки параллелограмма
   Прямоугольник
   Ромб
   Квадрат
   Теорема Фалеса. Средняя линия треугольника
   Трапеция
   Центральная и осевая симметрии
   Пропорциональные отрезки

Тригонометрические функции острого угла. Теорема Пифагора
   Тригонометрические функции острого угла. Определения
   Теорема Пифагора
   Основные тригонометрические тождества
   Значения тригонометрических функций некоторых углов
   Зависимости между сторонами и углами прямоугольного треугольника
   Решение прямоугольных треугольников

Прямоугольные координаты
   Координатная ось
   Прямоугольная система координат на плоскости
   Расстояние между точками
   Координаты середины отрезка
   Определение тригонометрических функций для любого угла от 0 до 180°

Векторы
   Понятие вектора
   Сложение и вычитание векторов
   Умножение вектора на число
   Координаты вектора
   Скалярное произведение векторов

Подобие
   Определение подобных треугольников
   Признаки подобия треугольников
   Подобие произвольных фигур

Окружность
   Касательная к окружности
   Центральные и вписанные углы
   Вписанная и описанная окружности
   Пропорциональность отрезков хорд и секущих окружности

Решение треугольников
   Теорема синусов и теорема косинусов
   Решение треугольников

Многоугольники. Длина окружности
   Ломаная
   Многоугольник
   Правильный многоугольник
   Длина окружности
   Длина дуги окружности. Радианная мера угла

Площади плоских фигур
   Понятие площади
   Площадь прямоугольника
   Площадь параллелограмма
   Площадь треугольника и ромба
   Площадь трапеции
   Площадь правильного многоугольника
   Площадь круга и кругового сектора


Контакты

subjects:geometry:скалярное_произведение_векторов

Скалярное произведение векторов

Скалярным произведением векторов $\overrightarrow{a}\{x_1; y_1\} \,и\, \overrightarrow{b}\{х_2; у_2\}$ (обозначается $ \overrightarrow{a}\overrightarrow{b} $ ) называется число $x_1x_2 + y_1y_2$ . Скалярное произведение $\overrightarrow{a}\overrightarrow{a}$ обозначается $\overrightarrow{a}^2$. Очевидно, $\overrightarrow{a}^2 = |\overrightarrow{a}|^2$ .

Из определения скалярного произведения векторов следует, что для любых векторов $\overrightarrow{a}\{х_1; y_1\}\,, \overrightarrow{b}\{х_2; у_2\}\,, \overrightarrow{c}\{х_3; у_3\}$ $$ (\overrightarrow{a} + \overrightarrow{b})\overrightarrow{c} = \overrightarrow{a}\overrightarrow{c} + \overrightarrow{b}\overrightarrow{c} $$ Действительно, левая часть равенства есть $(х_1 + х_2)х_3 + (у_1 + у_2)у_3$ , а правая $х_1х_3 + у_1у_3 + х_2х_3 + у_2у_3$ . Очевидно, они равны.

Углом между ненулевыми векторами $\overrightarrow{АВ} \,и\, \overrightarrow{АС}$ называется угол BAC (рис.1).

Подготовка по математике и геометрии онлайн репетитор

Рис.1

Углом между любыми двумя ненулевыми векторами $\overrightarrow{a} \,и\, \overrightarrow{b}$ называется угол между равными им векторами с общим началом. Угол между одинаково направленными векторами считается равным нулю.

Теорема 1. Скалярное произведение векторов равно произведению их абсолютных величин на косинус угла между ними.

Из этой теоремы получаем следствия.

  1. Следствие 1. Если векторы перпендикулярны, то их скалярное произведение равно нулю.
  2. Следствие 2. Если скалярное произведение отличных от нуля векторов равно нулю, то векторы перпендикулярны.

Обучение по геометрии

Пример 1. Даны векторы $\overrightarrow{a}\{1; 0\} \,и\, \overrightarrow{b}\{1; 1\}$ . Найти такое число $\lambda$ , чтобы вектор $\overrightarrow{a} + \lambda\overrightarrow{b}$ был перпендикулярен вектору $\overrightarrow{a}$ .

Решение. Имеем: $ \overrightarrow{a}(\overrightarrow{a} + \lambda\overrightarrow{b}) = 0\,; \overrightarrow{a}^2 + \lambda(\overrightarrow{a}\overrightarrow{b}) = 0$ . Отсюда $ \lambda = - \frac{\overrightarrow{a}^2}{\overrightarrow{a}\overrightarrow{b}} = - \frac{1}{1} = -1 $


Обучение по геометрии

subjects/geometry/скалярное_произведение_векторов.txt · Последние изменения: 2013/10/12 02:10 —

На главную страницу Обучение Wikipedia Тестирование Купить Контакты Нашли ошибку? Справка

Записаться на занятия

Ошибка Записаться на занятия к репетитору

Телефоны:

  • +7 (910) 874 73 73
  • +7 (831) 247 47 55

Skype: eduVdom.com

закрыть[X]
Наши контакты