Инструменты пользователя

Инструменты сайта


Боковая панель


Дифференциальные уравнения (диффуры)
Теоретическая механика: статика, кинематика, динамика

Теория вероятностей и математическая статистика FIXME
Строительная механика для строительных специальностей FIXME
Матанализ. Дифференциальное и интегральное исчисление FIXME
economics


Теоретическая механика. Статика:

Введение
   Предмет механики и ее задачи
   Предмет теоретической механики
   Основные понятия статики
   Аксиомы статики
   Простейшие типы связей

Система сходящихся сил
   Определение и теорема о трех силах
   Графическое определение равнодействующей сходящихся сил
   Аналитическое задание силы
   Аналитическое определение равнодействующей сходящихся сил
   Условия и уравнения равновесия системы сходящихся сил
   Решение задач
    ★ Равновесие под действием сходящейся системы сил

Теория пар сил
   Момент силы относительно центра
   Пара сил и ее свойства
   Теоремы об эквивалентности пар
   Сложение пар сил
   Равновесие систем пар

Приведение плоской системы сил
   Лемма Пуансо
   Теорема о приведении плоской системы сил
   Частные случаи приведения плоской системы сил
   Уравновешенная система сил

Определение опорных реакций плоских стержневых систем
 ★ Равновесие под действием системы параллельных сил на плоскости
   Система параллельных сил
   Произвольная плоская система сил
      Произвольная плоская система сил. РГР 1
    ★ Равновесие плоской произвольной системы сил
   Расчет составных систем
      Расчет составных систем. РГР 2
    ★ Равновесие системы тел 1
    ★ Равновесие системы тел 2
    ★ Равновесие системы тел 3
   Графическое определение опорных реакций


Контакты

subjects:termeh:statics:предмет_механики_и_ее_задачи

Предмет механики и ее задачи

Приступая к изучению новой учебной дисциплины, полезно ответить на вопросы: что она изучает, какой метод исследования применяет, а также какое место занимает в системе естествознания и образования среди других наук и дисциплин.

В отношении механики это особенно важно, поскольку в школьных и вузовских учебниках она традиционно ассоциируется с разделом физики, что невольно отводит ей место в ряду таких общеобразовательных дисциплин, как физика или математика. На самом деле механика играет гораздо более важную роль в подготовке специалиста в области строительства или архитектуры.

Напомним, что механика – это наука, изучающая механическое движение материальных объектов, то есть их взаимное перемещение в пространстве и во времени. В качестве материальных объектов помимо дискретных тел могут выступать среды – например, жидкость или газ и поля, поэтому круг объектов, изучаемых механикой очень широк.

В зависимости от физических свойств этих объектов и их размеров всю механику можно разделить на классическую или ньютонову и неклассическую.

Неклассическая механика - это действительно часть физики, в которой исследуются объекты микро- и макромира с учетом пространственно-временной зависимости.

Классическая механика имеет дело с объектами, протяженность которых приблизительно и с точностью до нескольких порядков заключена в интервале от 10-10 до 1010 метра. При их изучении свойства пространства и времени можно считать постоянными. Именно такую ньютонову механику мы и будем рассматривать в дальнейшем.

В зависимости от особенностей модели реальных объектов классическая механика делится на теоретическую механику - с моделью абсолютно твердого тела и механику сплошной среды с моделью деформируемого тела.

Основным методом исследования в механике является гипотетико- дедуктивный. Его суть заключается в выдвижении гипотезы, которая подтверждается или опровергается опытом.

Физика Математика Практика

Рис.1

Схематически место механики в системе естествознания можно определить так, как показано на рис.1. При этом механика деформируемого тела или механика сплошной среды, образующая ядро этой науки, окружена тремя сегментами, представляющими собой теоретическую механику, неклассическую механику микро- и макромира и прикладную механику, которые примыкают соответственно: к математике, физике и практике в широком смысле этого слова.

Под прикладной механикой понимают раздел механики, в котором ее выводы и методы применяют для решения задач проектирования, строительства и эксплуатации сооружений. Этот термин близок к понятиям «техническая» или «строительная» механика и объединяет такие учебные дисциплины строительного направления, с которыми студенты встречаются в процессе обучения, как «теоретическая механика», «сопротивление материалов», «строительная механика», металлические, железобетонные и другие виды конструкций.

subjects/termeh/statics/предмет_механики_и_ее_задачи.txt · Последние изменения: 2013/04/03 17:04 —

На главную страницу Обучение Wikipedia Тестирование Купить Контакты Нашли ошибку? Справка

Записаться на занятия

Ошибка Записаться на занятия к репетитору





закрыть[X]
Наши контакты