Инструменты пользователя

Инструменты сайта


education:школьный_учебник_знает_как_запудрить_мозги

Школьный учебник знает как запудрить мозги

Таблица из нового учебника

Учебник знает как запудрить детям мозги тригонометрией

т.е. три таблицы вместо одной

Многие современные учебники вместо того, что бы учить детей - запутывают их ещё больше. Мы уже писали об этом, да и не только мы, но на днях я получил ещё один пример, прямо таки показательный и не смог обойти его вниманием.

На просторах Интернета (и не только) можно неоднократно встретить утверждение, что старые учебники лучше новых. Но в большинстве своём дальше развивается мысль, что раньше и трава была зеленее и шоколад с мороженным вкуснее, да и кофе был «он», что делало его вкусным. Никаких подтверждений, скорее лёгкая самоирония и ностальгия. Ну так вот, сейчас я Вам раскрою на это глаза. Возьмём одну тему и посмотрим, что с нею сделали в современных учебниках. Смею Вас заверить, что такие либо подобные примеры можно найти почти во всех современных учебниках, причём по любым предметам.

Началось всё с простого - ученица пожаловалась, что не может запомнить таблицу значений синусов и косинусов, а другой ученик поддержал её в этом. Я очень удивился - в моей памяти таблица была небольшой и занимала немного места, мирно соседствуя со свойствами этих функций и единичным кругом, на который всегда можно положиться. Потом вспомнил, что в учебниках не указывается как эту таблицу проще запомнить и решил наглядно это показать. Каково же было моё удивление, когда ученики сообщили, что у них в учебнике - друга таблица, намного больше.

Заинтересовавшись, я решил взглянуть на эту таблицу и с удивлением обнаружил, что это не одна таблица! Из одной, сравнительно небольшой, таблицы сделали три! Мало того, что они на разных страницах (разворотах), так они ещё и разнесли их по разным параграфам! Фотографии этого «шедевра» современных веяний в образовании вы можете наблюдать в этой статье. Сразу замечу, что другой таблицы значений в синусов, косинусов, тангенсов и котангенсов в этом учебнике нет. У меня нет этой же версии учебника, но есть чуть старше, так в нём эти три таблицы находятся ещё на одной странице и в одной теме. Получается, что учебники становятся всё более непонятными?!

Давайте разберёмся - что же тут не так. Для этого посмотрим на классическую таблицу:

Классическая «старая» таблица

Таблица значений sin α, cos α, tg α, ctg α



0 рад
30º
$$\frac{\pi}{6}$$
45º
$$\frac{\pi}{4}$$
60º
$$\frac{\pi}{3}$$
90º
$$\frac{\pi}{2}$$
180º

$$\pi$$
270º
$$\frac{3\pi}{2}$$
360º

$$2\pi$$
$$\sin \alpha$$ 0 $$\frac{1}{2}$$ $$\frac{\sqrt{2}}{2}$$ $$\frac{\sqrt{3}}{2}$$ 1 0 -1 0
$$\cos \alpha$$ 1 $$\frac{\sqrt{3}}{2}$$ $$\frac{\sqrt{2}}{2}$$ $$\frac{1}{2}$$ 0 -1 0 1
$${\rm tg}\, \alpha$$ 0 $$\frac{1}{\sqrt{3}}$$ 1 $$\sqrt{3}$$ - 0 - 0
$${\rm ctg}\, \alpha$$ - $$\sqrt{3}$$ 1 $$\frac{1}{\sqrt{3}}$$ 0 - 0 -

Таблица из старых учебников

Сравните её с теми монстрами на фотографиях! Её (таблицу), конечно, можно рисовать по разному, но общий смысл должен быть доведён неизменно. Иногда, в старых учебниках встречалась сокращённая версия таблицы только для $\frac{\pi}{6}\,,\,\, \frac{\pi}{4}\,,\,\, \frac{\pi}{3}$ – для удобства запоминания, но при этом всегда пояснялось откуда брать недостающие значения. В формулах приведения – обязательно давались задания на углы, не входящие в эту таблицу. Так, на простых прмерах можно было ученикам понять и осознать - зачем нужны формулы приведения и/или единичный круг. Ещё раз повторюсь: если бы в учебнике, вместе с эти странными таблицами соседствовала классическая «старая» версия, то такого вопроса бы не стояло. Я даже допускаю, что раньше так и было, но потом кому-то пришла в голову «умная» идея её убрать.

Итак, чем же отличается классическая «старая» таблица:

  1. Углы даны и в градусах и в радианах. Это способствует запоминанию и осознанию того, что углы можно указывать и в таком виде и в таком. Это наглядно. Да, ученики потом должны на лету переводить величины из одной системы в другую. В задачнике даже есть на эту тему несколько примеров. Но! Эта таблица - та, которую ВСЕ выучивают наизусть. Это та таблица, на которой можно наглядно показать, что градусы и радианы обозначают одно и то же! Во многих старых учебниках это сделано, но в новых эту связь разрушили. Как результат - в головах учеников градусы и радианы - это совершенно разные не связанные с собой понятия. Ведь примеры по преобразованию одних в другие они проходят только один раз, а потом это забывают или не понимают и боятся спросить, а вот эту таблицу они смотрят очень часто, она могла бы направить их мысль в нужное русло, подсказать, но в новых учебниках эту функцию у неё отняли. Ведь это «так просто»: $\pi = 180^{\circ}$? Только ученики об этом «просто» постоянно забывают, не все конечно…
  2. Углы даны по порядку, обычно по возрастанию. В новой версии таблица разделена на две части, причём принцип разделения не написан - о нём нужно догадываться тем, кто эту тему только проходит! Да, в каждой таблице углы расположены по возрастанию, но вторая таблица не является прямым продолжением первой! Об этом нигде не сказано, а углы даны в виде радиан, к которым ещё школьники не привыкли, к тому же они в виде дробей. Я вас удивлю, но многие троечники не знают дроби или знают их не очень хорошо. Они понимают, что $\frac{\pi}{6}<\frac{\pi}{4}<\frac{\pi}{3}$ , но для этого им нужно подумать, не у всех такие сравнения делаются «на лету». Есть такие, которые и не задумаются над этим. Да, им нужно повторить дроби, но они то этого не знают и учат тригонометрию, а их вместо того, что бы учить - путают. В результате они пытаются всё это заучить, не понимая даже нужный порядок. Вот какой смысл делать отдельную таблицу для углов кратных 45 градусам и для углов кратных 30 градусам?
  3. Наглядность значений тангенса и котангенса. Под значениями синуса и косинуса наглядно, в одной таблице. даны значения тангенса и котангенса. Нередко было и напоминание - как собственно они получаются: ${\rm tg}\, \alpha = \frac{\sin\alpha}{\cos\alpha} \;;\; {\rm ctg}\, \alpha = \frac{\cos\alpha}{\sin\alpha}$ Любой мог проделать нехитрый фокус - поделить в одной колонке значение в графе синуса на значение в графе косинуса (если он знал дроби, конечно) и получить значение в графе тангенса. Поделив косинус на синус - получить котангенс. Самостоятельно убедиться, что тангенса и котангенса не существует в тех случаях когда знаменатель равен нулю. Любой мог понять, что если умеешь делить, то помнить часть таблицы с тангенсом и котангенсом не обязательно - её можно получить в любой момент. И что же из этого мы видим в новом учебнике? Да ни-че-го. Таблица тангенсов и котангенсов расположена в другом параграфе и лишь невнятная ссылка в виде текста «зная значения синуса и косинуса… нетрудно вычислить соответствующие значения тангенса и котангенса» - может заронить правильную мысль в голову умного и любящего тригонометрию ученика. Раз нетрудно - почему наглядно не показать и не напомнить - как именно нетрудно? Некоторые считают, что если оставить что-то непонятным, то ученик заинтересуется, попытается понять это сам и лучше запомнит. Что ж, в теории это должно быть так, но на практике - ученику и так хватает загадок в учебнике и не за чем усложнять его задачу, ведь увидев слишком много непонятного – он просто плюнет и займётся чем-то другим, подумав: «математика - это не моё, тут всё так сложно!»
  4. Меньше значений. В новых учебниках дано множество значений углов, которые может где-то и полезны, но по большому счёту только вредны. У нас что - соревнования: кто больше значений знает? Так давайте в обязательном порядке учить таблицы Брадиса! Но таблицы Брадиса не дают значения абсолютно всех углов – нужно использовать формулы приведения. Старая таблица - сразу приучает, что значения углов известны только в ограниченном диапазоне и потом, это ещё много раз пригождается, начиная с того, что заучивать нужно только значения у углов в 30, 45 и 60 градусов. Новые же таблицы они не дают понять полезность формул приведения – ведь эти углы уже известны их нужно «просто запомнить» и всё. Вот только вместо трёх значений для одной функции приходится запоминать аж 12! (Я не считаю значения для 0, 90, 180, 270 и 360 градусов – они есть и тут и там, хотя на мой взгляд, они гораздо удобнее запоминаются в единичном круге, ну да каждый может запоминать так как ему удобнее – главное не отбирать эту возможность.) 12 вместо 3 – как вам такая математика? А если взять и синус и косинус - получится 24 значения вместо 6, т.е. 18 «лишних» значений! Понятно почему школьники никак не могут выучить и запомнить эту таблицу! В этом навозе (34 значения) найти жемчужину (16, включая др.) – сложно (18 лишних). А формулы приведения и/или единичный круг учить всё-равно придётся, но уже на более сложных примерах, что не способствует пониманию.
  5. Таблица одна, а не три, что само по себе плюс, поскольку не нужно искать другие части таблицы, тем более, если они на разных разворотах, да ещё и не на соседних. Для тех школьников, у кого визуальная память одна таблица - это огромнейший плюс, да и другим удобнее. Ну да кому из авторов новых учебников нужно, что бы школьники могли быстро найти три громадных таблицы, которые сложно запомнить?
  6. Угол альфа. Можете звать меня ретроградом, но почему в учебниках меняют буквы, обозначающие, скажем угол? Доходит до смешного: тема Функция y=sin x И первое же предложение: «…знакомьтесь, функция s=sin t» Зачем? Запутать школьников? И чем был плох угол альфа, что его убрали отовсюду? Это сделали, что бы сразу можно было понять - кто ещё учился по старым, а кто уже учится по новым учебникам - достаточно попросить написать формулу? Лично мне кажется, что в углах альфа и бета был какой-то шарм, рифма что-ли, но это - дело вкуса. А вот то, что теперь школьники с первого взгляда не узнают формулу из старого-проверенного учебника и им будет тяжелее, при желании, его читать - это уже существеннее, они ведь только учатся.
  7. Меньше запоминать. Никто не хочет работать просто так и делать больше того, что от него требуют. Исключения конечно встречаются, но не очень часто. В классической «старой» таблице можно было сразу увидеть, что по большому счёту, при желании можно запомнить только три значения: либо значения синуса у углов 30, 45 и 60 градусов, либо значения косинуса этих же градусов, либо, скажем два значения синуса и одно косинуса,либо ещё как – остальные значения можно получить путём зеркального отражения. И всё – наглядно. В новой же, хотя и можно увидеть эту идею, но запомнить как связное целое – очень сложно, ведь это две разных таблицы, два разных объекта для запоминания, да ещё отдельная таблица для тангенсов и котангенсов – голову свернёшь!

Сокращённая таблица

30º
$$\frac{\pi}{6}$$
45º
$$\frac{\pi}{4}$$
60º
$$\frac{\pi}{3}$$
$$\sin \alpha$$ $$\frac{1}{2}$$ $$\frac{\sqrt{2}}{2}$$ $$\frac{\sqrt{3}}{2}$$
$$\cos \alpha$$ $$\frac{\sqrt{3}}{2}$$ $$\frac{\sqrt{2}}{2}$$ $$\frac{1}{2}$$
$${\rm tg}\, \alpha$$ $$\frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}} = \frac{1}{\sqrt{3}}$$ $\frac{\frac{\sqrt{2}}{2}}{\frac{\sqrt{2}}{2}} = 1$ $$\frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}} = \sqrt{3}$$
$${\rm ctg}\, \alpha$$ $$\frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}} = \sqrt{3}$$ $\frac{\frac{\sqrt{2}}{2}}{\frac{\sqrt{2}}{2}} = 1$ $$\frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}} = \frac{1}{\sqrt{3}}$$

для лучшего запоминания

Я уж не говорю про другие темы, типа формул приведения. Зачем давать все формулы сразу и в одном месте? Что бы их удобнее было учить? Нет, мы лучше дадим часть в одной теме, а часть в другой… Всё равно понимают и выучивают? Так дадим в учебнике только часть формул, наказав вывести остальные самостоятельно! А что? Про единичный круг, что он существует написали - так пусть выкручиваются! Непонятно написали? Не пояснили как соотносятся формулы приведения и единичный круг? Нет рисунков в теме про формулы приведения? Зато в в теме про единичный круг есть. Ну и что, что там про связь с формулами приведения нигде не указано - так они их ещё не проходили. Что? Непонятно? Хотите старый учебник?

А что насчёт того, что про периодичность функций синуса и косинуса в некоторых новых учебниках говорится только под конец изучения тригонометрических функций? После единичного круга, после формул приведения, после изучения свойств функций синуса и косинуса? Это нормально?

Простите - наболело.


Статьи об образовании и о нас
Что происходит с образованием в России и в Украине?
Наше образование рухнуло раньше ракеты «Зенит»

education/школьный_учебник_знает_как_запудрить_мозги.txt · Последние изменения: 2013/02/06 11:55 —

На главную страницу Обучение Wikipedia Тестирование Контакты Нашли ошибку? Справка

Записаться на занятия

Ошибка Записаться на занятия к репетитору

Телефоны:

  • +7 (910) 874 73 73
  • +7 (905) 194 91 19
  • +7 (831) 247 47 55

Skype: eduVdom.com

закрыть[X]
Наши контакты